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SUMMARY

In implicit upwind methods for the solution of linearized Euler equations, one of the key issues is
to balance large time steps, leading to a fast convergence behavior, and small time steps, needed to
sufficiently resolve relevant flow features. A time step is determined by choosing a Courant–Friedrichs–
Levy (CFL) number in every iteration. A novel CFL evolution strategy is introduced and compared
with two existing strategies. Numerical experiments using the adaptive multiscale finite volume solver
QUADFLOW demonstrate that all three CFL evolution strategies have their advantages and disadvantages.
A fourth strategy aiming at reducing the residual as much as possible in every time step is also examined.
Using automatic differentiation, a sensitivity analysis investigating the influence of the CFL number on the
residual is carried out confirming that, today, CFL control is still a difficult and open problem. Copyright
q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Implicit time integration methods for the solution of stiff systems of partial differential equations
arise from a variety of different areas in computational physics. Examples include plasma physics,
reactive and geophysical flows, radiation diffusion, radiation hydrodynamics, and computational
fluid dynamics; see the references in the survey by Knoll and Keyes [1]. Implicit schemes offer the
advantage of allowing large time steps, potentially leading to fast convergence. However, when the
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system of nonlinear equations resulting from the spatial discretization is solved in every time step,
a small time step is desirable to accelerate the convergence of Newton’s method. Finding a balance
between these two conflicting objectives is one of the challenges to develop efficient implicit
techniques for the numerical simulation of physical phenomena governed by partial differential
equations.

Practically, balancing large and small time steps is carried out by choosing a Courant–Friedrichs–
Levy (CFL) number for each time step. The CFL condition [2] for any explicit method requires that
the time step is limited by the time for some significant action to occur, and preferably considerably
less. In an implicit scheme, however, larger CFL numbers are allowed leading to larger time step
sizes. Despite its high relevance in various practical applications, the choice of the sequence of
CFL numbers in an implicit time integration method still remains an open problem, which has not
yet been solved.

The new contributions of this article are threefold: (i) a new CFL evolution strategy called
residual difference method (RDM) is proposed; (ii) experimental results are reported showing that
a CFL evolution strategy that minimizes the residual as a function of the CFL number is not
necessarily favorable; and (iii) a sensitivity analysis assessing the influence of the CFL number on
the residual is carried out.

The utility of the new methodologies is demonstrated in a challenging fluid dynamical problem
using the QUADFLOW [3–6] package. This adaptive multiscale finite volume solver for stationary
and non-stationary compressible flow computations implements a Newton–Krylov approach that
is often used in practice [1, 7–12].

The structure of this paper is as follows. In Section 2, the formulation of the Euler equations
and the solver QUADFLOW used throughout this work for numerical experiments are briefly
described. In Section 3, two known evolution strategies determining the CFL numbers for implicit
time integration methods are sketched and a new CFL evolution strategy is proposed. In Section 4,
numerical experiments are reported comparing the three CFL evolution strategies. A different CFL
evolution strategy in which the CFL numbers are selected in a such way that the residual decreases
as much as possible in every time step is explored in Section 5. In Section 6, a sensitivity analysis
of CFL evolution strategies is carried out using automatic differentiation.

2. DISCRETE EULER EQUATIONS

In this study, we consider the conservative formulation of the Euler equations for a compressible
gas. For an arbitrary control volume V ⊂Rd (d=2,3) with boundary �V and an outward unit
normal vector n on the surface element dS⊂�V , we have equations of the form

∫
V

�u
�t

dV +
∮

�V
F(u)ndS=0 (1)

Here, u=(�,�v,�etot)T denotes the vector of unknown conserved quantities, and t denotes the
time. The convective flux is given by

F(u)=
⎛
⎜⎝

�v

�v◦v+ pI

�etotv+ pv

⎞
⎟⎠ (2)
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where � denotes the density, p the static pressure, v the velocity vector of the fluid, and etot the
total energy. The symbol ◦ denotes the dyadic product, and I represents the identity. The system
is closed by the equation of state for a perfect gas and suitable initial and boundary conditions.

For the numerical simulation, we use the finite volume solver QUADFLOW [3–6] containing
methods for the solution of two- and three-dimensional compressible Euler– and Navier–Stokes
equations. It is based on block-structured grids using tensor-product B-splines. A key ingredient
in QUADFLOW is the use of local grid refinement in regions of high activity.

The computation of an accurate approximation of a stationary solution is based on a nested
iteration approach. Starting with an initial coarse grid, the time integration is computed until a
tolerance criterion for the residual is satisfied. Thereafter, a grid adaptation, i.e. a (local) grid
refinement, is performed, and the time integration procedure starts again with an interpolated
initial condition. The indicator for the local grid refinement is based on a multiscale analysis using
wavelets. To give an impression of the multi-block and adaptivity features of QUADFLOW, we
show two computational grids that are used in a simulation of an inviscous flow around a BAC
3-11/RES/30/21 airfoil [13] in Figure 1. This grid is also used later in test case 2 of Section 4.

Although we are interested in a stationary solution, we perform a non-stationary computation
resulting in a numerical method for approximating the stationary solution. This approach is also
known as pseudo-transient continuation, cf. [14]. To obtain fast convergence towards the stationary
solution, one wishes to use large time steps and thus an implicit time discretization method is
preferred. On every level of adaptation we start with an initial CFL number, which determines the
first time step. In QUADFLOW, the relation between the CFL number � and the local time step
�ti for the i th cell is given by [6]

�ti =�
Vi
�ci

(3)

where Vi is the volume of the cell i . The quantity �ci is related to the maximum eigenvalue of the
Euler equations and is defined by the following integral over the bounding surface of the control

Figure 1. Computational grids for the BAC 3-11/RES/30/21 airfoil. The whole grid consists of 12 blocks.
A part of the initial grid is depicted on the left. The right picture shows a part of the grid after 10

adaptations of local refinement.
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volume:

�ci =
∮

�V
(|vn|+a)dS

where a is the speed of sound.
In the following time steps, the CFL number (and thus the time step) is varied by one of the

three CFL evolution strategies that are described in Section 3. This approach then results in a
nonlinear system of equations in each time step. In each time step, one inexact Newton iteration
is applied, using a lower-order approximation of the Jacobian J . This means that the linearization
of the convective fluxes is based on a first-order accurate method in space. It solely facilitates
solution information provided by compact stencils, which only couple direct face neighbors. The
Jacobian matrix has the structure

J (u)=diag

(
Vi
�ti

)
+ �R(u)

�u
(4)

where R(u) denotes the residual vector. Details are given in [5]. Note that in general a smaller
time step will improve the condition number of the approximated Jacobian in (4). The resulting
linear systems are solved using preconditioned Krylov subspace methods that are available in the
PETSc library [15, 16]. The choice of the time step is crucial for the rate of convergence.

Remark
In the present study, the flux-vector splitting by Hänel and Schwane [17] is combined with the
Venkatakrishnan limiter [18]. A linear reconstruction technique is applied to obtain second-order
accuracy in regions where the solution is smooth. We use the B2-scheme by Batten et al. [19].
A point-block-ILU(0) preconditioned BiCGSTAB [20] method is used to solve the system of linear
equations. The actual implementation is detailed in [21]. The CFL evolution strategies described in
Section 3 show a similar behavior if a different upwind scheme, a different implicit time integration
method, or an alternate Krylov method is employed.

3. CFL EVOLUTION STRATEGIES

Implicit time integration methods allow large time steps. In contrast to explicit methods, the time-
stepping is not limited by the CFL condition [2]. That is, values �>1 can be used for the CFL
number. For stationary flows, it is known that large time steps are allowed only near the steady-state
solution and that one should choose small time steps as long as the flow is setting up.

For steady flows, the CFL number �k =�(tk) at a time step tk is usually varied in a prescribed
interval �k ∈[�min,�max]. With small CFL numbers �k , one has to perform many time steps in order
to achieve convergence. Choosing the CFL number �k too large may result in a breakdown of the
iteration process. There are two possible reasons for breakdowns:

• Too much time has been elapsed in the corresponding time step. Therefore, some flow features
could not be resolved correctly so that the iteration process diverges towards a non-physical
flow.

• The condition number of the Jacobian (4) is too large such that the Krylov solver cannot solve
the corresponding system of linear equations within a prescribed number of iterations.
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In the following, we review two different methods for choosing CFL numbers for stationary
problems, and we also suggest a new strategy.

3.1. Exponential progression (EXP)

The exponential law (EXP)

�k+1=�0 ·(�EXP)k, k∈N0 (5)

is used in many flow solvers [6, 22–24]. In every time step, the CFL number is increased by a
constant factor i.e. �k+1=�EXP ·�k . The control parameters �0 and �EXP completely determine a
sequence of CFL numbers. Especially the choice of �EXP is crucial, because choosing a larger
value for �EXP may speed up the overall convergence process. However, selecting �EXP too large
may result in a breakdown of the iteration process. Appropriate values for the control parameters
are problem-dependent and in general not known a priori. Typical values are �0=�min and �EXP∈
[1.05,1.5].

3.2. Switched evolution relaxation (SER)

In contrast to the EXP strategy, the switched evolution relaxation (SER) [25] incorporates infor-
mation from the iteration process. The norm of the relative residual, denoted by

Rk :=‖Rk‖2
is directly coupled with the CFL number of the next time step:

�k+1=�SER ·
(
R0

Rk

)�SER
, k∈N0 (6)

In this manner, the sequence of CFL numbers selected by the SER method is not only determined by
the choice of the control parameters �SER and �SER but also by the particular flow problem at hand.
However, inappropriate values for the control parameters �SER and �SER can yield slow convergence
or breakdown of the computation. In this study, we use �SER∈[1.0,5.0] and �SER=�min as in
[6, 26]. In [24, 25] �SER=1.0 is chosen and the value of �SER is varied.

Reconsidering (6) the CFL numbers increase in every time step as follows:

�k+1=�k ·
(
Rk−1

Rk

)�SER
, k∈N

This suggests a more general approach involving the previous residual Rk and Rk−� for fixed
�∈N.

�k+1=�k ·
(
Rk−�

Rk

)�SER
(7)

This variant may allow one to increase the CFL numbers faster, if the residual falls over � iterations.
While we are unaware of any convergence theory using any of the presented CFL evolution

strategies in a solver such as QUADFLOW, convergence theory for some pseudo-transient contin-
uation methods can be found in [14] and subsequent articles.
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3.3. Residual difference method (RDM)

This new strategy is based on the following idea: consider an iteration towards a steady-state
solution. If the iterates seem to be converged, i.e. the solution does not change significantly between
two consecutive iterations, one may increase the time step to check whether the solution remains
stable. On the other hand, if the solution uk varies much from one time step to another, smaller
time steps should be chosen in order to resolve all flow features. Note that the difference of the
solutions of two consecutive iterations equals the difference of the corresponding errors. As the
residual is taken as an estimate for the error, we have ‖uk−uk−1‖≈‖Rk−Rk−1‖. Therefore, we
suggest the following evolution strategy referred to as residual difference method (RDM):

�k+1=

⎧⎪⎨
⎪⎩

�min if k<k0,

�RDM ·
(

1

|Rk−Rk−1|
)�RDM

if k�k0,
k∈N0 (8)

where k0�1 denotes the first index satisfying Rk0�Rk0−1−�. That is, we start the CFL evolution
after the first step in which the reduction in the residual by an additive constant � occurs. The
smaller the difference between the two consecutive residuals |Rk−Rk−1|, the larger the CFL
number �k+1 for the next iteration is chosen. Before starting the CFL evolution, the CFL numbers
are kept fixed.

The control parameters for RDM are �RDM and �RDM. Similar to those in the EXP and SER
strategies, they must be selected carefully in order to obtain rapid convergence on one hand and
to avoid breakdowns on the other hand. In this study, we set �=10−2 and choose �RDM∈{1,2,5}
and �RDM∈[0.6,6.0].
Remark
All three strategies may lead to breakdowns during the iteration process and the user might have
to restart the computation with modified parameters. In [24] an expert system is proposed that
switches between different CFL evolution strategies. While the SER and the RDM strategies are
sensitive to changes in the residuals and may generate a sequence of oscillating CFL numbers, the
EXP strategy increases the CFL number continually and may result in a sequence of too rapidly
increasing CFL numbers.

4. NUMERICAL EXPERIMENTS

In this section, we present results of numerical experiments using the different CFL evolution
strategies described above, where the CFL numbers are allowed to vary in the interval [�min,�max]=[1,105]. All computations are carried out with QUADFLOW. We perform a time integration on
every level of discretization until the residual of the density is reduced by a factor of 102. On
the finest level, we require the factor to be 104. After every adaptation the CFL evolution restarts
with �1=�min. We allow eight levels of refinement, i.e. each cell can be subdivided at most eight
times. In total, 11 adaptations are actually performed. The initial solution on each adaptation level
is obtained by interpolation of the solution of the previous adaptation level.

In the following, we investigate the number of iterations (time steps) as well as the actual central
processing unit (CPU) time of the implicit time integration method needed to achieve convergence
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ON CFL EVOLUTION STRATEGIES IN EULER EQUATIONS 7

on the finest level of adaptation. Note that with larger CFL numbers the systems of linear equations
in Newton’s method are typically harder to solve, taking more CPU time.

In our experiments, the linear systems are solved until the relative residual is less than 10−2.
We observed that using a lower accuracy might speed up the overall method in some cases, but
also often diverges towards a non-physical flow. On the other hand, solving the linear systems with
higher accuracy significantly increases the number of Krylov iterations without actually decreasing
the number of time steps.

4.1. Test problems

The first configuration is a standard test problem for inviscid compressible flow solvers. We
consider the transonic stationary flow around the NACA0012 airfoil [27], where M∞ =0.8 and
�=1.25◦. In the following, this setting is denoted by test case 1A. We also investigate another test
case, called 1B, mimicking a non-adaptive scheme. That is, the calculation on the finest adaptation
level is initialized with free instream conditions rather than an interpolated solution of the previous
adaptation level. In this case, more computational effort is typically needed to resolve all flow
features. Thus, smaller times steps must be used in the initial phase of the computation.

The second test problem is the standard cruise configuration of the BAC 3-11/RES/30/21
transonic airfoil [13]with M∞ =0.77 and �=0.0◦. The computation of the corresponding stationary
flow, referred to as test case 2, is also used in the Collaborative Research Center SFB 401 at
RWTH Aachen University [28, 29].

4.2. Parameter study on the CFL control parameters

In this section, we present the results of a parameter study on the CFL control parameters for the
three evolution strategies EXP, SER, and RDM. Here, the parameters �EXP, �SER, �RDM, and �RDM
are varied, while �0 and �SER are assigned the fixed value 1.0. We use the SER strategy with the
parameter �=1, unless stated otherwise.

The results for test case 1A are displayed in Table I, showing, for varying parameter values,
the number of time steps needed to achieve convergence, denoted by ‘# ts’, as well as the actual
CPU time, given in seconds. All timing results are obtained on an Intel Xeon processor running
at 3GHz clock speed. It turns out that, for all three CFL evolution strategies, the choice of the
control parameters has a great impact on the number of time steps needed for convergence. For
EXP, the number of time steps varies between 35 and 124 depending on the value of �EXP. For
SER, this number varies between 34 and 172. For RDM, between 36 and 90 time steps are required
to achieve convergence. A similar observation can be made for the total number of CPU seconds
required for the calculation. For each CFL evolution strategy, we focus on the ‘best’ case, i.e. the
set of control parameters resulting in the fastest overall convergence in terms of CPU time. For
the EXP strategy, choosing �EXP=15 results in an overall computation taking 31.6 s. Applying
SER with �SER=4.5 requires 27.2 s, and RDM needs 28.4 s, if the control parameters �RDM and
�RDM are set to the values 5.0 and 1.0, respectively. These ‘best’ parameter values for the three
CFL evolution strategies are given in boldface in Table I. For these values, the actual selected CFL
numbers �k as well as the corresponding residual history are depicted in Figure 2. Note that the
progress of the residual, Rk , is very similar for all three strategies, which is not surprising as they
all choose relatively large CFL numbers �k already in the early iterations, and for time steps 5 and
greater they always choose �k =�max.
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DOI: 10.1002/fld



8 H. M. BÜCKER, B. POLLUL AND A. RASCH

Table I. Test case 1A: time steps needed for convergence on the finest grid and the
corresponding CPU times in seconds. Different values for the control parameters of the

three CFL evolution strategies are compared.

EXP SER RDM

�EXP # ts CPU �SER # ts CPU �RDM �RDM # ts CPU

1.1 124 80.8 1.1 172 121.7 1.0 1 90 67.2
1.2 88 60.0 1.2 138 109.2 1.0 2 77 63.9
1.5 52 41.7 1.5 90 75.9 1.5 1 37 32.7
2.0 53 42.8 2.0 44 43.1 1.5 2 40 31.5
3.0 48 41.6 2.5 47 42.0 2.0 1 41 32.2
5.0 45 37.9 3.0 43 37.5 2.0 2 41 33.0
10 40 36.0 3.5 41 34.5 3.0 1 42 34.5
15 37 31.6 4.0 39 32.9 4.0 1 39 29.3
20 38 32.4 4.5 37 27.2 5.0 1 36 28.4
50 35 33.4 5.0 34 28.5 6.0 1 36 29.0

5 10 15 20 25 30 35
10

0

10
1

10
2

10
3

10
4

10
5

Time step k

γ k

Test case 1A

EXP

SER

RDM

5 10 15 20 25 30
10

10

10

10

CPU time [s]

R
k

Test case 1A

EXP

SER

RDM

–1

–2

–3

–4

Figure 2. CFL numbers �k selected by the three CFL evolution strategies (left) and the corresponding
residual history (right) on the finest grid for test case 1A where the boldface values from Table I, �EXP=15,

�SER=4.5, �RDM=5.0, and �RDM=1.0, are taken.

The situation is, however, different in test case 1B. The results of a corresponding parameter
study are presented in Table II. It seems more difficult to find feasible values for the control
parameters because values assumed to be appropriate for test case 1A may not even yield a
converging iteration process in test case 1B. Such a divergence in the iteration process is indicated
by ‘—’ in the table. From all three CFL evolution strategies, EXP with �EXP=1.09 is the best
choice, both in terms of number of iterations and overall CPU time. However, when increasing
the parameter �EXP to 1.1 or higher the strategy EXP does not yield any result at all because
the iteration process diverges. Compared with EXP, the SER strategy leads to a much slower
convergence, even when the ‘best’ parameter value, �SER=2.8, is chosen. The reason for this slow
convergence of SER is that it chooses only relatively small CFL numbers �k in the first 1200
iterations. No convergence is achieved by SER when �SER is set to 2.7, 3.0, or greater than 3.0.
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Table II. Test case 1B: time steps needed for convergence on the finest grid and the
corresponding CPU times in seconds. Different values for the control parameters of the

three CFL evolution strategies are compared.

EXP SER RDM

�EXP # ts CPU �SER # ts CPU �RDM �RDM # ts CPU

1.05 189 116.3 1.3 1767 446.2 0.60 1 596 242.1
1.06 165 106.3 1.5 1642 410.5 0.80 1 290 151.0
1.07 148 99.9 2.0 1462 353.8 0.83 1 296 156.9
1.08 134 93.0 2.2 1417 338.4 0.85 1 — —
1.09 124 87.6 2.4 1382 332.9 0.87 1 230 127.4
1.10 — — 2.6 1354 322.6 0.93 1 — —
1.11 — — 2.7 — — 0.94 1 186 120.8
1.12 — — 2.8 1329 314.0 0.95 1 — —
1.13 — — 2.9 1320 314.3 0.98 1 168 100.5
1.14 — — 3.0 — — 1.00 1 — —

200 400 600 800 1000 1200
10

0

10
1

10
2

10
3

10
4

10
5

Time step k

γ k

Test case 1B

EXP

SER

RDM

50 100 150 200 250 300
10 –4

10 –3

10 –2

10 –1

100

101

CPU time [s]

R
k

Test case 1B

EXP

SER

RDM

Figure 3. CFL numbers �k selected by the three CFL evolution strategies (left) and the corresponding
residual history (right) on the finest grid for test case 1B where the boldface values from Table II,

�EXP=1.09, �SER=2.8, �RDM=0.98, and �RDM=1.0, are taken.

In the case of RDM, it is even harder to find feasible parameter values for �RDM and �RDM
as many combinations yield a diverging iteration process. If, however, a feasible pair of values is
found, e.g. �RDM=0.98 and �RDM=1.0, RDM is significantly faster than the SER strategy. For
test case 1B, the selected CFL numbers for EXP, SER, and RDM, using their ‘best’ parameter
values, and the corresponding residuals are plotted in Figure 3.

As a third example, consider the parameter study for test case 2 that is summarized in Table III.
Again, it can be observed that the iteration process does not converge if the control parameters are
not chosen carefully. The parameter values for EXP, SER, and RDM yielding the fastest iteration
process in terms of CPU time are �EXP=1.2, �SER=2.5, �RDM=1.5, and �RDM=1.0. The selected
CFL numbers using these parameter values and the corresponding residuals are plotted in Figure
4. Compared with SER and RDM, the EXP strategy with �EXP=1.2 is significantly slower. While
SER and RDM choose relatively large CFL numbers already in the early iterations, the EXP
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Table III. Test case 2: time steps needed for convergence on the finest grid and the
corresponding CPU times in seconds. Different values for the control parameters of the

three CFL evolution strategies are compared.

EXP SER RDM

�EXP # ts CPU �SER # ts CPU �RDM �RDM # ts CPU

1.05 183 328.9 1.2 80 252.8 1.0 1 70 210.0
1.1 104 226.0 1.4 51 188.6 1.0 2 47 158.2
1.2 62 169.2 1.5 42 165.5 1.0 5 41 152.8
1.3 — — 1.6 36 151.5 1.1 1 56 192.3
1.4 — — 1.7 32 149.5 1.1 2 41 161.3
1.5 — — 1.8 28 128.4 1.1 5 32 121.9
1.6 — — 1.9 26 122.2 1.4 1 32 135.4
1.7 — — 2.0 — — 1.5 1 26 111.1
1.8 — — 2.5 19 104.9 1.5 2 — —
1.9 — — 3.0 — — 1.6 1 — —

10 20 30 40 50 60
10

0

10
1

10
2

10
3

10
4

10
5

Time step k

γ k
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EXP

SER

RDM

20 40 60 80 100 120 140 160
10 –4

10 –3

10– 2

10 –1

CPU time [s]

R
k

Test case 2

EXP

SER

RDM

Figure 4. CFL numbers �k selected by the three CFL evolution strategies (left) and the corresponding
residual history (right) on the finest grid for test case 2 where the boldface values from Table III, �EXP=1.2,

�SER=2.5, �RDM=1.5, and �RDM=1.0, are taken.

strategy has a constant increase factor of �EXP=1.2. However, setting this factor to 1.3 or higher
leads to a divergent iteration process, as shown in Table III. Using the ‘best’ parameter values
stated above, the performance of SER and RDM is quite similar with a slight advantage of SER.
Hence, the SER method yields the fastest iteration process, if the control parameter �SER is chosen
appropriately.

The SER strategy can be parametrized with the parameter � as shown in (7). In the following, we
investigate the impact of �=1,2,5,10 on the performance of SER. The corresponding results are
presented in Table IV for test case 2. For fixed �SER, increasing � can lead to faster convergence.
On the other hand, divergence to a non-physical solution can occur, if � is chosen too large.
Computations with larger values for � require smaller values for �SER. Therefore, the corresponding
values for �SER in Table IV are small compared with those in Table III. Thus, both parameters
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Table IV. Test case 2: time steps needed for convergence on the finest grid and the
corresponding CPU times in seconds. Different values for the control parameters �SER

and � of the more general SER strategy (7) are compared.

SER (�=1) SER (�=2) SER (�=5) SER (�=10)

�SER # ts CPU # ts CPU # ts CPU # ts CPU

0.2 8952 6039.0 2096 1889.4 152 366.2 34 141.6
0.4 2094 1868.1 297 566.0 28 124.2 — —
0.6 698 922.2 83 255.4 — — — —
0.8 295 564.1 38 163.1 — — — —
1.0 144 365.3 — — — — — —
1.2 80 252.8 20 100.5 — — — —
1.4 51 188.6 — — — — — —
1.6 36 151.5 — — — — — —

�SER and � have similar effects on the CFL number. However, if the residuals almost stagnate, as
in test case 1B, the selected CFL numbers tend to stay in the order of one. Therefore, more than
1200 time steps are required in test case 1B, independent of the choice of the parameter �.

It would be desirable to determine values for the control parameters in advance. However,
looking closer at Table III, one can imagine that this may be hardly possible, because the relations
of CPU time versus control parameter have no single minimum: For example, looking at the CPU
time needed when applying the SER strategy with the control parameters �SER=1.8,�SER=1.9,
and �SER=2.0, one might believe that �SER=1.9 is a good choice and all values greater than 2.0
would result in a divergent iteration process. Nevertheless, a better choice is obviously �SER=2.5.
A similar behavior can be observed in Table IV for �=2.

5. LOCALLY OPTIMAL CFL NUMBERS

As there is no clear winner among the three strategies for CFL-control (in terms of CPU time
or total iterations needed to converge), a different approach is presented in this section. From an
abstract point of view, each time step k could be considered as a function

Rk :R+ →R+, �k 	→ Rk(�k) (9)

mapping a CFL number �k to the norm of the relative density residual that is obtained after
performing this iteration using �k . Some typical plots of the function (9) are given in Figure 5.
Apparently, the shape of the functions does not change much from time step to time step. The idea
is to find the best CFL number in every iteration, i.e. finding a value for �k such that the residual
gets as small as possible:

Rk(�k)= min
�∈R+

Rk(�) (10)

Note that the residual Rk in the kth iteration depends not only on �k but also on the CFL numbers
�1, . . . ,�k−1 used in the previous iterations.

In order to test this approach, we implemented a heuristic search strategy approximating �k ,
denoted by LOC in the sequel, where in each iteration several trial steps are carried out, using
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Figure 5. Relative residual of density Rk for different values �k for test case 1A on the finest grid.
The residuals Rk for time steps k=13,14,15 and for k=16,17,18 are shown in the left and right
subplots, respectively. The CFL numbers �1, . . . ,�k−1 for the first k−1 time steps are selected by

the LOC strategy, i.e. by approximating (10).

different values for the CFL number within a certain interval. In the neighborhood of the CFL
value yielding a minimal residual, further trial steps are performed. From the set of CFL numbers
tested during this heuristic search, the best CFL number, i.e. the value �k that yields the smallest
residual, is then employed to perform the actual iteration. The selected CFL numbers �k for the
computation corresponding to Figure 5 were gained using the LOC strategy. A clear decrease in
the residuals Rk can be observed in every time step.

However, it turns out that this method of choosing locally optimal CFL numbers does not decrease
the total number of iterations. In fact, the total number of iterations needed for convergence is typically
larger than if any of the other methods described in Section 3 were used. Taking test problem 1A
from Section 4.1 as an example, applying the EXP strategy with parameters [�min,�max]=[1,1000],
�EXP=1.1, and �0=1.0 yields convergence within 159 iterations while the iteration process did not
converge within 2000 iterations when the LOC strategy is employed. In additional experiments, a
combination of EXP and LOC is used. More precisely, we carry out nLOC−1 iterations using the
EXP strategy before we switch to LOC.We denote this strategy by LOC(nLOC). The CFL numbers �k
used by the different strategies EXP and LOC(nLOC) for nLOC∈{2,20,40,80} in each iteration k are
shown in the left subplot of Figure 6. The corresponding residuals Rk are given in the right subplot of
Figure 6. A closer look at Figure 6 reveals that, as soon as the LOC strategy is initiated, the relative
density residual decreases quite fast. In subsequent iterations, the rate of decrease of the residual gets
smaller such that almost no progress can be observed.

In the long run, the pure EXP strategy yields faster convergence although the residual actually
increases during several iterations.

Remark
The implicit (e.g. Euler) time-stepping method and the Newton’s method are in conflict in the
following sense: It is obvious that for any implicit method the steady-state solution can be achieved
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Figure 6. Test case 1A: CFL numbers �k selected by EXP and LOC(nLOC), for various nLOC (left), and
corresponding residual history Rk (right).

faster by choosing larger time steps. On the other hand, Newton’s method converges only locally
and its rate of convergence increases with decreasing time steps.

Finding the balance between these two methods is the task of an adaptive CFL control strategy.
This was in fact the motivation for the design of the LOC strategy, which decreases the density
residual in every time step as much as possible. Although the residuals decrease rapidly in the
beginning, the CFL numbers selected by LOC tend to become very small after a couple of time
steps. Hence, the implicit time-stepping method requires significantly more iterations than if large
CFL numbers, as e.g. determined by EXP, were used.

From Figure 6 it seems that a fast iteration process must allow an increase in the residual R.
However, the LOC(nLOC) strategy eventually yields very small CFL numbers for all values of nLOC.

Function (9) depends on many ingredients such as Newton’s method, the implicit time integration
method, the choices of the reconstruction scheme, the Riemann solver, the Krylov solver, and the
limiter. Therefore, the residuals result from a multitude of ingredients. Thus, claiming a reduction
in the residual in every time step might not be the fastest strategy. The main reason for the failure of
the LOC strategy might be the time integration itself. Consider again test case 1B, cf. Section 4.1.
Here, the calculation on the finest adaptation level was initialized with free instream conditions.
Hence, in the first time step, the residual is zero in all cells except those cells that are adjacent
to the profile. As the computation proceeds, the flow field evolves over the whole computational
domain, starting from the profile. This naturally leads to an increase in the residual in the cells
that are not adjacent to the profile. Therefore, an increase in the overall residual is not surprising
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for test case 1B. Even in an adaptive computation, such as test case 1A, the same effect can occur.
Although we do not start with free instream conditions, but with an interpolated solution, there is
always a region in which the grid has been changed by the adaptation and where even an increase
in the residual from time step to time step may be advantageous for a fast convergence process.

6. SENSITIVITY ANALYSIS

In order to further investigate the relationship between the CFL number and the residual, we carry
out a sensitivity analysis on the function Rk given in (9). The derivative of the norm of the density
residual Rk w.r.t. the CFL number �k is computed by automatic differentiation (AD). This term
comprises a set of techniques for automatically augmenting a computer program with statements for
the computation of derivatives. The AD technology is applicable whenever derivatives of functions
given in the form of a high-level programming language, such as Fortran, C, or C++, are required.
The reader is referred to the books [30, 31] and the proceedings of AD workshops [32–35] for
details on this technique. In AD the program is treated as a—potentially very long—sequence of
elementary operations such as addition or multiplication, for which the derivatives are known. Then
the chain rule of differential calculus is applied repeatedly, combining these step-wise derivatives
to yield the derivatives of the whole program. This mechanical process can be automated, and
several AD tools are available for transforming a given code to the new differentiated code, also
called derivative code; see www.autodiff.org for a recent list of AD tools. Thus, AD requires
little human effort and produces derivatives without additional truncation error. That is, in contrast
to numerical differentiation based on divided differencing, no evaluations with perturbed input are
needed.

In this study, the differentiation procedure was not fully automatic because the parts of QUAD-
FLOW that are relevant for this study consist of modules written in different programming
languages, namely Fortran, C, and C++. In QUADFLOW, several low-level Fortran subroutines
constitute the mathematical core of the flow solver. Higher-level routines calling these Fortran
subroutines are implemented in C and C++ and are mainly responsible for the control flow and
for the interfacing to the PETSc library [15, 16] written in C.

Since currently no AD tool is capable of augmenting mixed-language programs with derivatives,
we followed a semi-automatic approach for this study: first, the low-level Fortran subroutines
have been automatically transformed by ADIFOR [36]. Thereafter, the higher-level modules were
modified manually such that subroutine invocations to the original low-level routines were replaced
by corresponding calls to the differentiated versions of those Fortran routines. This also includes
providing memory for the derivatives. When a system of linear equations is iteratively solved by
the PETSc library, AD is not applied to the PETSC code but is handled in a hierarchical way as
described in [37].

Employing the differentiated version of QUADFLOW, we are able to compute, in each iteration,
k, not only the residual Rk(�k) but also the derivative �Rk(�k)/��k . The corresponding results
for the three CFL evolution strategies EXP, SER, and RDM, using test case 1A, are presented in
the first, second, and third rows of Figure 7, respectively. Each CFL evolution strategy is applied
with three different sets of control parameters. The residuals Rk(�k) are displayed in the plots on
the left-hand side of Figure 7, whereas the plots on the right-hand side show the absolute values
of the derivatives of Rk(�k) with respect to �k . Note that the scales for Rk(�k) and |Rk(�k)/��k |
are logarithmic. In all cases, the absolute values of the derivatives are relatively large during the
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Figure 7. Residuals Rk(�k) and absolute values of their sensitivities, |�Rk(�k)/��k |,
for the three CFL evolution strategies EXP (top row), SER (middle row), and RDM

(bottom row), using various control parameters.
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early time steps and then decrease as the residual values decrease. This indicates a larger impact
of the selected CFL number �k on the solution in the early iterations, which becomes smaller as
the solution converges. This is expected because in the steady-state problems discussed here the
choice of the CFL number has virtually no effect on an almost converged solution.

7. CONCLUSIONS

The aim of a good CFL evolution strategy is to find the balance between choosing large CFL
numbers in order to achieve fast convergence of the implicit time-stepping method and selecting
small time steps so that convergence of Newton’s method can be guaranteed and all flow features
can be resolved. The results of Section 5 show that the best strategy does not have to locally
minimize the residuals as much as possible in every time step and that even an increase in the
residual must be accepted in order to achieve rapid overall convergence.

A new CFL evolution strategy, called RDM, is introduced, and a comparison of RDM with the
existing strategies EXP and SER shows that there is no clear winner. Using the different CFL
evolution strategies within an expert system like advocated in [24] may improve this situation, but
the feeling that CFL evolution can be improved will remain. Currently, optimal CFL evolution is
still an open problem. Application-specific knowledge, intuition, and trial and error are still needed
in order to determine appropriate values for the CFL control parameters.

To better understand the impact of the CFL numbers on the residuals, a sensitivity analysis is
carried out. As, today, the CFL evolution is still not completely understood, involving numerous
different numerical phenomena, a sensitivity analysis based on divided differencing would add
another potential source of error. Therefore, we rely on automatic differentiation to evaluate
sensitivities without additional truncation error. The analysis confirmed that CFL control is a subtle
issue.
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